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ABSTRACT: Hydraulic fracturing has been the most common approach to stimulate tight formations. The geometry
of the wellbore and the time history of the hydraulic loading play important roles in induced fracture patterns. For
example, generating multiple perforations in a wellbore is nowadays attracting more attention in oil industry to enhance
gas recovery. The increased number of fractures can potentially enhance the yield of a reservoir by increasing the regions
affected by hydraulic fractures. We use an h-adaptive spacetime discontinuous Galerkin method and an interfacial damage
model to study the conditions for which the induced hydraulic fractures become effective and propagate in rock. Our
results show that as the loading rate decreases, only a few of these fractures will propagate. As the loading rate
increases, more perforations become active, until ultimately all result in crack propagation. Moreover, higher loading
rates affect larger zones for each of the initial perforations by dynamic fracture features such as microcracking and
crack bifurcation. Our study mainly focuses on stimulation techniques that induce fully dynamic loading on rocks; for
example, high explosives detonate and sends a shock wave in rock. Given the limitations of hydraulic fracturing technique,
we study the effectiveness of a hybrid approach where initial perforations similar to those for hydraulic fracturing are
used as seeds of crack propagation under dynamic loading. Finally for very high rates of loading, we demonstrate that
a stochastic approach for crack nucleation predicts more realistic fracture patterns than conventional approaches that
assume a macroscopically uniform fracture strength for rock.
Acknowledgments: The authors gratefully acknowledge partial support for this work via the U.S. National
Science Foundation (NSF), CMMI - Mechanics of Materials and Structures (MoMS) program grant number
1538332.

1 INTRODUCTION

Generating fractures in deep and tight formations has
received a high priority in oil industry to enhance the
productivity of low permeability reservoirs which are
already in operation. The induced fractures interact-
ing with natural fractures form an interface with rock
matrix and the borehole to facilitate the oil extrac-
tion. In fact, fracture volume induced by a stimu-
lation technique is negligible in comparison with the
total reservoir volume; however, they provide an in-
terface with matrix which is larger than the borehole.
As a result, very small permeability values are suf-
ficient for production in a fractured tight formation.
Therefore, the formation of fracture networks with a
widespread pattern is a critical key in increasing pro-

duction of tight oil reservoirs. Some geological factors
highly affect the formation of fracture networks: rock
mineral composition, rock mechanical properties, nat-
ural fractures and stress field. The orientation of the
natural fractures and the stress anisotropy in frac-
tured formations highly affect the propagation of the
hydraulic fracture and the formation of fracture net-
works [1, 2].

The results observed by Vishkai et al. [3] illus-
trate the importance of rock properties, stress magni-
tude, and stress orientation on fracture pattern in un-
conventional naturally fractured reservoirs. Bahrami
et al. highlighted the significance of well comple-
tion system, horizontal well orientation, and direc-
tion of in-situ horizontal stresses in controlling well
productivity [4]. That is, relative magnitude of in-
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situ stresses and their direction can control produc-
tion performance of non-fractured and hydraulically
fractured horizontal wells in unconventional gas reser-
voirs. Besides, fracture initiation and propagation in
quasi-brittle materials under strain-controlled loading
is highly sensitive to strain rate. Using a two dimen-
sional Discrete Element Method (DEM), Tomac et
al. investigated a hypothesis that fluid pressurization
rate or the fluid flow rate influences the character,
shape and velocity of fracture propagation in rock [5].
Their results indicate that very high fluid flow rates
cause fracture arrest and multiple fracture branch-
ing from the borehole. Moreover, they show that the
relative compressibility of fracturing fluid and rock
plays a significant role in fracture propagation veloc-
ity. In fact, the rapid build-up of the pressure in the
wellbore, in absence of the inflow of the fluid into
initiated fracture, causes creation of multiple simul-
taneous fracture branches at the wellbore wall [5]. For
tight formations and low permeable rocks, under high
loading rates the predicted tensile crack lengths are
relatively small due to the possibility that alterna-
tive deformation mechanisms such as shear cracking
or propagation of the pre-existing flaw are activated
at high rates [6].

According to the rate at which energy is applied,
well stimulation technologies can generally be catego-
rized into three approaches. At one extreme conven-
tional, hydraulic fracturing, having a relatively low
rate of loading, results in a single bi-winged fracture
extending outward from a well, oriented perpendic-
ular to the least principal rock stress while the po-
tential penetration for the fracture can be large, hun-
dreds of feet. However, having multiple perforations
is not beneficial and in fact those would not be ac-
tivated in this technique. On the other extreme, ex-
plosive fracturing, having a very rapid loading rate,
results in a highly fractured zone radially around the
wellbore, but usually not exceeding 10 feet. How-
ever, high induced compressive stresses in the vicinity
of the wellbore can cause compaction decreasing the
permeability of the near-wellbore region as a damaged
zone. Pulse fracturing is between these two extremes
of the loading rates. Avoiding the damage associated
with the explosive fracturing approach, this technique
creates a radial fracture pattern, which is desirable.
This technique results in multiple fractures extending
radially from the wellbore with penetration on the
order of 10-20 feet. For example, propellant fractur-
ing involving the pressure build-up due to propellant
burning accompanied by a gas combustion is a kind
of pulse fracturing methods. Pulse fracturing is also
included in the early stage of conventional hydraulic

fracturing when a high loading rate is applied as an
instantaneous fracture creation and propagation af-
ter wellbore breakdown. The combination of pulse
and hydraulic fracturing holds promise for tight for-
mations as a hybrid method [7].

Considering two approaches of deterministic and
stochastic crack nucleation models, we perform a sen-
sitivity analysis to examine the effect of loading rate
on resulting fracture patterns. A probabilistic nucle-
ation model based on the Weibull model is proposed
to model heterogeneity of rock strength around a well-
bore. In §2, we briefly discuss the formulation of an
interfacial damage model and an h-adaptive Space-
time Discontinuous Galerkin (SDG) method for frac-
ture simulation of rocks. Of particular importance
to hydraulic fracturing is the ability of SDG method
to align inter-element boundaries with user-specified
interfaces in spacetime. Also, the interfacial dam-
age model captures modes I and II of intact material
breakage as well as shearing along newly created and
pre-existing fractures [8, 9]. Finally, in §3, we quali-
tatively study the crack patterns obtained by chang-
ing the rate of loading. We demonstrate that as the
loading rate increases, more dynamic brittle fracture
features such as microcracking and crack branching
occur and that high-rate loading provides a mecha-
nism to activate all initial perforations from the well-
bore wall. Our results also demonstrate that incorpo-
rating material inhomogeneities is particularly impor-
tant under very high strain-rate loading conditions.

2 FORMULATION

2.1 A traction-displacement controlled
damage model

In this work we use a sharp interfacial model to rep-
resent mechanical degradation in rock. The dam-
age model presented in [10, 11] has several advan-
tages over conventional cohesive models, in that it
incorporates rate effects and unlike intrinsic cohesive
models does not artificially increase the compliance of
the bulk [12]. Furthermore, it seamlessly incorporates
all dynamically consistent contact modes. Albeit all
these advantages, the aforementioned damage model
suffers from the possibility of having incomplete dam-
age when an interface is and must be physically fully
debonded.

The following sections describe three main com-
ponents of the damage model. In §2.1.1 dynami-
cally consistent solutions for different contact / sep-
aration modes are discussed. An averaging scheme
that combines these contact solutions to form macro-
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scopic target solutions is described in §2.1.2. Finally,
the derivation of the weights by which these solutions
are combined is discussed in §2.1.3. Specifically, in
the last section we describe how a new damage evolu-
tion equation remedies the incomplete damage prob-
lem with the models in [10,11].

2.1.1 Riemann solutions for different contact
modes

ξ1, e1

ξ2, e2

x1

x2

t

Γ P

(s−,v−)

(s+,v+)

(s̆, v̆±)

Figure 1: Local coordinate frame at arbitrary space-
time location P on a spacetime fracture surface Γ for
a problem in two spatial dimensions.

The solutions for individual contact modes are ob-
tained by solving local Riemann problems at a contact
interface. A local coordinate frame at an arbitrary
spacetime location P on contact interface Γ is illus-
trated in fig. 1. The local coordinates are (ξ1, ξ2, t),
and the frame is oriented such that the ξ1-direction
aligns with the spatial normal vector on Γ .

The quantities from the opposite sides of Γ , which
are decorated with superscripts + and −, define the
initial data for the Riemann problem. The normal
vector is oriented from side + to − and is used to
express the components of traces of velocities v±

and tractions, s±. Tractions are computed from
s± = σ±n where σ± are traces of stress tensor. The
Riemann values at a given point P on the interface
include components of the traction vector acting on
the interface and traces of the velocity components
from each side of the interface. We denote these by
(s̆, v̆±), as shown in the figure. Depending on the
form of kinematic compatibility condition for a given
contact mode, all, some, or none of the components of
target velocities v̆± may suffer jump across the inter-
face. On the other hand, target traction s̆ is uniquely
defined from the balance of linear momentum.

For linear elastodynamic problem, characteristic
values are preserved along characteristic directions.
For an isotropic material, characteristic directions
move in spacetime with dilatational and shear wave
speeds, c±

d and c±
s ,

cd =
√
λ+ 2µ
ρ

, cs =
√
µ

ρ
. (1)

where ρ is the mass density and λ, µ are the Lamé
parameters. Subsequently, impedance values, given
by,

Zi± :=
{

(cdρ)± i = 1
(csρ)± i = 2, 3

(2)

are used to define characteristic values. The preser-
vation of characteristic values from each side and
enforcement of appropriate kinematic condition are
used to derived Riemann solutions for various contact
modes [13]. Specifically, boded and contact–stick so-
lutions, decorated with ST and B respectively, are,

s̆iB = s̆iST = s̆i = si+Zi− + si−Zi+

Zi− + Zi+
+ Zi−Zi+

Zi− + Zi+
(v+
i − v

−
i )

(3a)

v̆B
i = v̆ST

i = v̆i = si− − si+

Zi− + Zi+
+ v+

i Z
i+ + v−

i Z
i−

Zi− + Zi+

(3b)

For the separation mode, no kinematic compati-
bility condition is enforced across the interface, hence
v̆+ and v̆− are independent. Similar to TSRs, where
target traction is obtained by displacement jump
across the interface, a constitutive model is used to
obtain separation traction S. Accordingly, Riemann
solutions for separation mode, decorated by S, are
obtained as,

s̆iS = s̆i = Si (4a)

v̆S±
i = v̆±

i = v±
i ±

Si − si±

Zi±
(4b)

The prescribed traction vector S can take different
forms. For example, similar to TSRs, S can be ex-
pressed as a function of the displacement jump across
the interface. For hydraulic fracture applications S1

is set equal to the applied hydraulic pressure. Rie-
mann solutions for contact–slip modes are the last
case to be considered. However, due to more com-
plexity of those solutions and not a direct relation to
the material herein, we refer the readers to [13] for
further detail on contact–slip solutions.
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2.1.2 Macroscopic target values

The macroscopic target traction vector s∗ and ve-
locity vectors v∗± are obtained by using an interfa-
cial damage parameter D which interpolates between
bonded and debonded target solutions,

s∗ := (1−D)s̆B +Ds̆D (5a)
v∗± := (1−D)v̆B +Dv̆±

D (5b)

where subscripts B and D indicate Riemann values
for bonded (cf. (3)) and debonded conditions. For the
debonded part, either contact–stick (3), contact–slip,
or separation (4) solutions hold. Clearly, for prob-
lems that contact modes do not occur, s̆D = S and
v∗± = v̆S± . The details on the form of debonded so-
lutions, when contact modes can exist, can be found
in [13].

2.1.3 Damage evolution law

We adopt the following damage evolution law,

Ḋ =
{ 1
τ̃ [1−H(〈Dt −D〉+)] D < 1
0 D = 1

, (6)

where τ̃ is a relaxation time, and Dt is the target dam-
age value. The function H takes the value of unity at
zero and monotonically decreases to 0 at infinity. Fol-
lowing [14], the particular form of H used in this work
is given as H(x) = exp(−ax). It is clear from (6) that
when loading monotonically increases at a time scale
much slower than τ̃ , 〈Dt −D〉+ → 0 and D → Dt.
That is, the target damage value Dt is in fact quasi-
static damage value under monotonically increasing
loading condition. Finally, the positive part operator
in 〈Dt −D〉+ ensures that D can only change (in-
crease) when target damage value is larger than the
present damage value, i.e., under loading conditions.

We stipulate Dt to be a function of acting trac-
tions and separation vector. More specifically, we as-
sume Dt to be expressed as,

Dt = g(s̆, δ̆) (7)

where s̆ is a scalar stress quantity, labeled as effective
stress, and δ̆ is the effective displacement jump as dis-
cussed below. Experimental studies such as [15, 16]
demonstrate that damage evolution on an interface is
mainly stress-driven. In the proposed damage model,
the interface is divided in the two parts of bonded
and debonded which conceptually take (1 − D) and
D area fractions of the interface at a point. Since the
bonded part resists crack opening, it is the traction
acting on the bonded part, i.e., s̆B from (3a), that

drives damage evolution. While the dependence of s̆
on s̆B can be calibrated experimentally, we adopt the
definition of effective stress from [17],

s̆ :=
√
〈s̆1

B〉2+ + β2
s

[(
s̆2

B
)2 +

(
s̆3

B
)2] (8)

where βs is the shear stress factor ; the larger βs, the
more sensitive is fracture response to shear stress at
the interface. The positive-part operator 〈.〉+ ensures
that only tensile mode of normal traction drives dam-
age evolution.

The effective displacement is a scalar function of
displacement jump δ := u− − u+ where u− and u+

are the interior traces of the displacement vector from
the two sides of the interface. Again motivated by the
definition of effective quantities in [17] we adopt the
following definition for δ̆,

δ̆ :=
√
〈δ1〉2+ + β2

δ

(
δ2

2 + δ2
3
)

(9)

where similar to previous case, displacement mode
mixity βδ signifies the importance of tangential dis-
placement jump relative to normal separation and the
positive part operation for 〈δ1〉+ ensures that damage
does not accumulate by interface penetration.

To define the dependency of Dt on s̆ and δ̆ in (7)
we define traction target damage Ds

t and displacement
jump target damage Dδ

t as,

Ds
t =


0 s̆ < s,
s̆−s
s̄−s s ≤ s̆ < s̄

1 s̄ ≤ s̆
, (10a)

Dδ
t =


0 δ̆ < δ,
δ̆−δ
δ̄−δ δ ≤ δ̆ < δ̄

1 δ̄ ≤ δ̆
, (10b)

where s and s̄ denote, respectively, effective traction
thresholds for the onset of additional traction damage
evolution and for attainment of the maximum dam-
age rate. The displacement scales δ and δ̄ have
a similar interpretation and meaning to those from
(10a) but for displacement jump damage parameter
Dδ
t . Finally, Dt in (7) can in turn be expressed as

a function of Ds
t and Dδ

t . For example, we use the
following function,

Dt = min
(√

(Ds
t )

2 +
(
Dδ
t

)2
, 1
)

(11)

A detailed analysis, which is not provided herein
for brevity, shows that the definition of Dt in (11)
remedies the incomplete damage problem of models
in [10,11].
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2.2 Probabilistic model for crack nucle-
ation and propagation

While the probabilistic crack nucleation model and
spacetime adaptive crack tracking scheme in this sec-
tion are described in [8], a short description is pro-
vided for completeness and better interpretation of
results in §3 (particularly §3.2).

The fracture response of many quasi-brittle ma-
terials, including rocks, is highly sensitive to their
microstructural defects Fracture models that assume
uniform material properties can predict very unreal-
istic fracture responses particularly for quasi-brittle
materials given their high sensitivity to microstruc-
tural defects. In addition, for cases where a rather
uniform stress field is experienced the homogeneity of
fracture properties can result in rather instantaneous
fracture initiation at many points in the domain as
they all experience almost the same stress field and
have identical fracture strengths.

V
θ

P
s1

s2

V1

V2

s̆ s̄

Figure 2: The angular distribution of effective stress
s̆ and fracture strength s̄ around vertex V at the top
of a patch.

We base our probabilistic crack nucleation crite-
ria on the Weibull model [18,19], since it can reason-
ably well model probabilistic fracture strength and
size effect of quasi-brittle materials such as rock. The
cumulative distribution function (CDF) for fracture
strength s̄, cf. (10a), is given by,

P (s̆) = 1− e
−
A
A0

(
s̆− smin
s0

)m
(12)

in which A0 is a reference area, such as the area of
an experimental rock specimen used to calibrate the
Weibull model, s0 is a strength scale, m is the Weibull
modulus, and smin is a lower bound for the fracture
strength. Lower values for s0 imply lower fracture
strengths, s̄.

Figure 2 illustrates how the Weibull model is used
to nucleate new cracks in discrete setting. An h-
adaptive spacetime discontinuous Galerkin method

[20–22] advances the solution by erecting a patch,
small collection of elements, around a vertex in time.
The patch of elements around vertex V in fig. 2, has
a spatial area of A. This area represents the sample
area used in the Weibull model in (12). Accordingly,
a random strength s̄ is sampled for the vertex V based
on the calibrated Weibull model. The gray circle in
fig. 2 depicts angular-independent s̄, where distance
to vertex V indicates the value of s̄ for a given poten-
tial crack propagation angle θ. The fracture strength
is compared with effective stress s̆ computed from (8)
for any potential crack propagation angle θ. The ra-
dial distribution of s̆ is shown by the green line in the
figure, where again distance to vertex V indicates the
value. If for a point such as P effective stress s̆(θ) is
a local maximum and exceeds s̄, vertex V becomes
an Active Crack Tip (ACT) and a crack propagation
from V, aligned with the direction corresponding to
maximum effective stress, is requested. Finally, the
SDG method’s powerful adaptive operations in space-
time enable aligning element boundaries with any re-
quested crack direction. For example, in fig. 2 either
the element V-V1-V2 is refined along V1-V2 to align
a new element edge with VP direction, or the edge
V-V2 is gradually aligned with VP in spacetime; for
more information please refer to [10,11].

3 NUMERICAL RESULTS

Wellbores are commonly cased and then perforated
before starting hydraulic fracturing for stability con-
cerns and for isolating the well from undesirable re-
gions. These perforations generated during the pro-
cess of a well completion play the role of a transmis-
sion channel between the wellbore and the reservoir.
In fact, a perforation may serve as an initial frac-
ture to help with crack nucleation. As sketched in
fig. 3, an application with phasing angles of 90◦ is
considered. The domain is a 2m × 2m square. All
problems considered use the confinement pressures
σh = σH = 2.425 MPa, unless otherwise mentioned.
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Figure 3: Problem sketch for the dynamic fracturing
in a well with four perforations

In this section we study the effect of loading rate
and the choice of nucleation model. Dynamic stimu-
lation methods are often associated with explosive or
propellant methods. While these approaches are typ-
ically performed without any initial perforations, [7]
shows that the existence of some initial perforations
greatly improves the connectivity of induced fracture
network and recovery of the reservoir. The dura-
tions at which the loads are applied with these hy-
brid approaches approximately range from 1 to 100
ms. Also, while a single hydraulic fracturing injec-
tion often takes a duration in the order of minutes, the
studies that consider the early pump-in stage in the
area close to the well [23], or consider more dynamic
and/or cyclic application of loading [24,25] deal with
load ramp times in the range 0.1 to 10 s. Finally,
in §3.2 we demonstrate that as the loading rate in-
creases, it becomes more imperative to use a fracture
model that does not treat rock as a medium with uni-
form strength at macroscale. Accordingly, to better
emphasize this point and cover the range of relevant
ramp times discussed above, we have considered load-
ings with ramp times ranging from 10 µs to 1 s in this
section.

We use the same material and interface properties
for all the problems considered herein: Young’s mod-
ulus E = 20 GPa, mass density ρ = 2500 kg/m3, Pois-
son’s ratio ν = 0.20, and relaxation time τ̃ = 30 ms.
For the Weibull model we use the parameters m = 4,
η = 3.8 MPa, smin = 500kPa, and A0 = 1m2. Set-
ting A = 4m2 (the area of the domain), in (12) the
Weibull model yields the mean value E(s̄) = 2.9 MPa
and standard deviation SDV(s̄) = 683 kPa for frac-
ture strength in the analysis domain. For the deter-
ministic approach in §3.2 a constant value of fracture

strength is used and set to the reference value from
the Weibull model.

3.1 Effect of rate of loading on fracture
patterns

Figures 4, 5, and 6 show time sequences of solutions
for fast (tr = 10 µs), intermediate (tr = 1 ms), and
slow (tr = 100 ms) loading rates, respectively. The
strain energy density is mapped to color with blue
to red colors corresponding to zero to high values.
The kinetic energy density is mapped to height field.
For fast loading rate, tr = 10 µs, we clearly observe
sharp wave fronts scattering inside the domain, cf.
figs. 4(a-c). The existence of regions of high kinetic
and strain energy densities corresponds to a highly
transient crack propagation regime for tr = 10 µs.
Also, due to the high input power to the system not
only cracks propagate from all four perforations, but
also they bifurcate almost immediately after the ap-
plication of the load.

In comparison, figs. 5(a-c) show a less dynamic
propagation mode in the early stages for the interme-
diate loading rate case. It is not until times slightly
before t = 800 µs in fig. 5d that all the main cracks
are bifurcated. At the later stages in figs. 5(e-f) crack
propagation becomes more transients, as the cracks
have accelerated sufficiently to bifurcate and induce
side microcracks. Finally, we present the results for
tr = 100 ms in fig. 6. Some major differences between
this case and the more dynamic loadings is that cracks
propagate only from two perforations and that much
larger crack openings are observed at later stages of
crack propagation as shown in fig. 6f.

In fig. 7 we show the space meshes at late stages of
crack propagation for all different loading rates. We
observe that the solutions for the shortest ramp times
in figs. 7a and 7b are very similar, with both exhibit-
ing almost immediate crack bifurcation at the base of
all four perforations. As the ramp time increases fur-
ther in figs. 7c and 7d, cracks take a smoother path
and there are fewer bifurcation events. Finally, past
the ramp time tr = 100 ms and in figs. 7e and 7f we
observe that two of the perforations do not result in
any crack propagation. This is expected from numer-
ous quasi-static hydraulic fracture simulations in the
literature that demonstrate the same phenomena.
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(a) Time t = 25 µs. (b) Time t = 150 µs. (c) Time t = 300 µs.

(d) Time t = 800 µs. (e) Time t = 1.2 ms. (f) Time t = 1.7 ms.
Figure 4: Solution visualization of well stimulation for tr = 10 µs and random nucleation model.

(a) Time t = 400 µs. (b) Time t = 500 µs. (c) Time t = 650 µs.

(d) Time t = 800 µs. (e) Time t = 1.2 ms. (f) Time t = 1.7 ms.
Figure 5: Solution visualization of well stimulation for tr = 1 ms and random nucleation model.
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(a) Time t = 22.00 ms. (b) Time t = 22.25 ms. (c) Time t = 22.35 ms.

(d) Time t = 23.25 ms. (e) Time t = 24.00 ms. (f) Time t = 30.00 ms.
Figure 6: Solution visualization of well stimulation for tr = 100 ms and random nucleation model.

(a) tr = 10 µs / time t = 800 µs. (b) tr = 100 µs / time t = 800 µs. (c) tr = 1 ms / time t = 1.1 ms.

(d) tr = 10 ms / time t = 5.5 ms. (e) tr = 100 ms / time t = 26.5 ms. (f) tr = 1 s / time t = 145 ms.

Figure 7: Space mesh for different ramp times and random nucleation model with A0 = 1 m2.
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Figure 8: Solution at time t = 1.1 ms for ramp time
tr = 1 ms and stress anisotropy ratio rs = σH/σh = 3

2 .

We should mention that a reservoir’s stress
anisotropy can work against crack propagation from
all perforations. As an example, we consider the load-
ing with ramp time tr = 1 ms; as shown in fig. 7c
for stress anisotropy rs = σH/σh = 1, main cracks
propagate from all four perforations. Now, if there
is a 50% anisotropy, i.e., rs = 1.5, as shown in fig. 8
cracks propagate only from two of the perforations.
Although cracks propagate from the two vertical per-
forations they soon get arrested. Our numerical re-
sults, not presented here, demonstrate that the same
conclusion can be made for higher loading rates tr and
higher anisotropy ratios rs. We expect the cases with
higher rate of loading to be less sensitive to stress
anisotropy, a topic that will be investigated more
thoroughly at a later time.

3.2 Comparison of deterministic and
stochastic nucleation models

The main goal of this section is to demonstrate the
importance of using a stochastic model for crack nu-
cleation, particularly under highly transient rates of
loading. In fig. 9 we show the results from the de-
terministic and stochastic nucleation approaches for
different ramp times in the left and right columns, re-
spectively. For the fastest loading rate of tr = 100 µs
in figs. 9(a-b) we observe that the deterministic ap-
proach results in a significantly more complex frac-
ture pattern with substantially more microcracking
and crack branching events. We observe the same
difference, but to a lesser extent, in figs. 9(c-d); while
in this case the overall fracture patterns are similar,

we observe many more microcracking events in fig.
9c. Finally, for the slower loading rates in figs. 9(e-h)
we observe that for both approaches cracks propagate
only from two of the perforations and there are fewer
microcracking and crack branching. This is obviously
expected as the loading is becoming less transient.
Another observation is that for these slower loading
rates, there is less difference between the solutions
obtained from the deterministic and stochastic ap-
proaches.

The explanation of significant discrepancy be-
tween the two approaches at higher loading rates is
as follows. When the loads are applied more rapidly,
there is less time at the process zones of active cracks
or nucleated cracks to accumulate damage. Under
this condition large regions experience high stresses.
If the material is assumed to have constant frac-
ture strength, cracks will nucleate from many points
in these regions. With the stochastic approach the
points that have lower strength are nucleated first
and the cracks propagates from these points have
sufficient time to release stress in neighboring areas
that incidentally have higher strength values. This re-
sponse clearly is closer to what is experienced in real
rock, given the distribution of various types of defects
that act as nucleation points for crack propagation.

4 CONCLUSIONS

We used the powerful h-adaptive Spacetime Discon-
tinuous Galerkin (SDG) method, along with an in-
terfacial damage model, for modeling dynamic stim-
ulation of rock around a wellbore. We observed that
at highly transient modes of loading, cracks propa-
gated from all the four perforations of the wellbore
configuration considered. The extent of crack path
oscillation, microcracking, and crack bifurcation, i.e.,
features of dynamic brittle fracture, became less sig-
nificant as the loading rate decreased. Also, for load-
ing ramp times greater than or equal to 100 ms only
two of the four main cracks propagated. Finally,
at higher rates of loading the deterministic crack nu-
cleation model, where a constant fracture strength is
used, predicted very complex (and less physical) so-
lutions compared with a stochastic approach. This
emphasizes the importance of using approaches that
do not assume material is macroscopically homoge-
neous for fracture simulation of brittle materials.
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(a) Deterministic nucleation, tr =
100 µs / time t = 800 µs.

(b) Random nucleation, tr = 100 µs
/ time t = 800 µs.

(c) Deterministic nucleation, tr =
10 ms / time t = 5.5 ms.

(d) Random nucleation, tr = 10 ms /
time t = 5.5 ms.

(e) Deterministic nucleation, tr =
100 ms / time t = 26.5 ms.

(f) Random nucleation, tr = 100 ms
/ time t = 26.5 ms.

(g) Deterministic nucleation, tr = 1 s
/ time t = 140.0 ms.

(h) Random nucleation, tr = 1 s /
time t = 145.0 ms.

Figure 9: Comparison of space meshes for deterministic and stochastic nucleation models for different ramp
times.
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